

Contents

Preface

	 Installation
	Requirements

	Getting the Code

	Loading the plugin

	Required Database Fields

General

	 Login
	Configuration
	enabled

	Action-Specific Events
	Crud.beforeLogin

	Crud.afterLogin

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	 Logout
	Configuration
	enabled

	Action-Specific Events
	Crud.beforeLogout

	Crud.afterLogout

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	 Register
	Configuration
	enabled

	redirectUrl

	saveMethod

	saveOptions

	view

	viewVar

	Action-Specific Events
	Crud.beforeRegister

	Crud.afterRegister

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

Password Resetting

	 Forgot Password
	Configuration
	enabled

	findMethod

	redirectUrl

	view

	viewVar

	Action-Specific Events
	Crud.beforeForgotPassword

	Crud.afterForgotPassword

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	 Verify Reset Token
	Configuration
	enabled

	findMethod

	redirectUrl

	saveMethod

	saveOptions

	view

	viewVar

	Action-Specific Events
	Crud.verifyToken

	Crud.afterVerify

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeFind

	Crud.afterFind

	Crud.recordNotFound

	Crud.beforeSave

	Crud.afterSave

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	 Reset Password
	Configuration
	enabled

	findMethod

	redirectUrl

	saveMethod

	saveOptions

	view

	viewVar

	Action-Specific Events
	Crud.verifyToken

	Crud.afterResetPassword

	Generic Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeFind

	Crud.afterFind

	Crud.recordNotFound

	Crud.beforeSave

	Crud.afterSave

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

Introduction

CRUD Users is a set of companion action classes for the CRUD plugin. It’s goal is
to provide a flexible base for various generic user-related actions.

The core philosophy behind CRUD and CRUD Users is that you only need to deal with
aspects of your applications. This means that you should be able to listen for
events in order to modify how it looks and how it behaves.

When to use CRUD Users

	When you want to take care about the rules of your data processing and are okay
customizing how it looks

	If you prefer tweaking, overriding and configuring instead of doing
everything from scratch.

Status

This plugin is still in early development status, things may change suddenly,
but it can be used in real projects already.

Installation

Installing CRUD Users requires only a few steps

Requirements

	CakePHP 3.x

	PHP 5.6+

Getting the Code

The recommended installation method for this plugin is by using composer.

In your aplication forlder execute:

composer require friendsofcake/crud-users

Loading the plugin

Execute the following lines from your application folder:

bin/cake plugin load CrudUsers

Required Database Fields

The table holding your user schema and data should contain these fields:

	token of a type of your choice, for instance of type VARCHAR. The following command will generate a migration for this:

bin/cake bake migration alter_users token:string:unique

	verified of type BOOLEAN, e.g. TINYINT(1) for MySQL. The following command will generate a migration for this:

bin/cake bake migration alter_users verified:boolean

LoginAction

Enable it via:

$this->Crud->mapAction(
 'login',
 'CrudUsers.Login'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

Action-Specific Events

This is a list of events emitted from the Login Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.beforeLogin

TODO

Crud.afterLogin

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

LogoutAction

Enable it via:

$this->Crud->mapAction(
 'logout',
 'CrudUsers.Logout'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

Action-Specific Events

This is a list of events emitted from the Logout Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.beforeLogout

TODO

Crud.afterLogout

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

RegisterAction

Enable it via:

$this->Crud->mapAction(
 'register',
 'CrudUsers.Register'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

redirectUrl

The URL to redirect to on success.

$this->Crud->mapAction(
 'login',
 [
 'className' => 'CrudUsers.Login',
 'redirectUrl' => '/'
]
);

// OR

$this->Crud->action()->config('redirectUrl', '/');

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

Action-Specific Events

This is a list of events emitted from the Register Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.beforeRegister

TODO

Crud.afterRegister

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

ForgotPasswordAction

Enable it via:

$this->Crud->mapAction(
 'forgotPassword',
 'CrudUsers.ForgotPassword'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

redirectUrl

The URL to redirect to on success.

$this->Crud->mapAction(
 'login',
 [
 'className' => 'CrudUsers.Login',
 'redirectUrl' => '/'
]
);

// OR

$this->Crud->action()->config('redirectUrl', '/');

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

Action-Specific Events

This is a list of events emitted from the ForgotPassword Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.beforeForgotPassword

TODO

Crud.afterForgotPassword

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

VerifyAction

Enable it via:

$this->Crud->mapAction(
 'verify',
 'CrudUsers.Verify'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

redirectUrl

The URL to redirect to on success.

$this->Crud->mapAction(
 'login',
 [
 'className' => 'CrudUsers.Login',
 'redirectUrl' => '/'
]
);

// OR

$this->Crud->action()->config('redirectUrl', '/');

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

Action-Specific Events

This is a list of events emitted from the Verify Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.verifyToken

TODO

Crud.afterVerify

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id)
{
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject()->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id)
{
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: " . $event->subject()->entity->id . " in the database");
 });

 return $this->Crud->execute();
}

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

	entity An entity object marshaled with the HTTP POST data from the request.

	saveMethod A string with the saveMethod.

	saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

	id The newly inserted ID. It’s only available if the call to Table::save() was successful.

	success indicates whether or not the Table::save() call succeed or not.

	created true if the record was created and false if the record was updated.

	entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id)
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id)
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add()
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->created) {
 $this->log("The entity was created with id: " . $event->subject()->id);
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

ResetPasswordAction

Enable it via:

$this->Crud->mapAction(
 'resetPassword',
 'CrudUsers.ResetPassword'
);

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

Warning

If you have enabled Crud and you are still receiving a MissingActionException, ensure the action is enabled and
that the controller has the \Crud\Controller\ControllerTrait implemented.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

redirectUrl

The URL to redirect to on success.

$this->Crud->mapAction(
 'login',
 [
 'className' => 'CrudUsers.Login',
 'redirectUrl' => '/'
]
);

// OR

$this->Crud->action()->config('redirectUrl', '/');

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

Action-Specific Events

This is a list of events emitted from the ResetPassword Crud Action.

Please see the Events Documentation for a full list of generic properties
and how to use the event system correctly.

Crud.verifyToken

TODO

Crud.afterResetPassword

TODO

Generic Events

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id)
{
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject()->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id)
{
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: " . $event->subject()->entity->id . " in the database");
 });

 return $this->Crud->execute();
}

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

	entity An entity object marshaled with the HTTP POST data from the request.

	saveMethod A string with the saveMethod.

	saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

	id The newly inserted ID. It’s only available if the call to Table::save() was successful.

	success indicates whether or not the Table::save() call succeed or not.

	created true if the record was created and false if the record was updated.

	entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id)
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id)
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add()
{
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject()->created) {
 $this->log("The entity was created with id: " . $event->subject()->id);
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

If you’d like to customise the flash messages that are used, perhaps you’re using
friendsofcake/bootstrap-ui [https://github.com/friendsofcake/bootstrap-ui]. It’s actually quite simple to do, and can
be done as part of the component configuration or on the fly.

public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'edit' => [
 'className' => 'Crud.Edit',
 'messages' => [
 'success' => [
 'params' => ['class' => 'alert alert-success alert-dismissible']
],
 'error' => [
 'params' => ['class' => 'alert alert-danger alert-dismissible']
]
],
]
]
]);
}

If you’d like to configure it on the fly you can use the eventManager to change the event subject as the event is emitted.

$this->eventManager()->on('Crud.setFlash', function (Event $event) {
 if ($event->subject()->success) {
 $event->subject()->params['class'] = 'alert alert-success alert-dismissible';
 }
});

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

Index

 _static/up.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Contents

 		 Installation

 		Requirements

 		Getting the Code

 		Loading the plugin

 		Required Database Fields

 		 Login

 		Configuration

 		enabled

 		Action-Specific Events

 		Crud.beforeLogin

 		Crud.afterLogin

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

 		 Logout

 		Configuration

 		enabled

 		Action-Specific Events

 		Crud.beforeLogout

 		Crud.afterLogout

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

 		 Register

 		Configuration

 		enabled

 		redirectUrl

 		saveMethod

 		saveOptions

 		view

 		viewVar

 		Action-Specific Events

 		Crud.beforeRegister

 		Crud.afterRegister

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

 		 Forgot Password

 		Configuration

 		enabled

 		findMethod

 		redirectUrl

 		view

 		viewVar

 		Action-Specific Events

 		Crud.beforeForgotPassword

 		Crud.afterForgotPassword

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

 		 Verify Reset Token

 		Configuration

 		enabled

 		findMethod

 		redirectUrl

 		saveMethod

 		saveOptions

 		view

 		viewVar

 		Action-Specific Events

 		Crud.verifyToken

 		Crud.afterVerify

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.beforeFind

 		Crud.afterFind

 		Crud.recordNotFound

 		Crud.beforeSave

 		Crud.afterSave

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

 		 Reset Password

 		Configuration

 		enabled

 		findMethod

 		redirectUrl

 		saveMethod

 		saveOptions

 		view

 		viewVar

 		Action-Specific Events

 		Crud.verifyToken

 		Crud.afterResetPassword

 		Generic Events

 		Crud.startup

 		Crud.beforeFilter

 		Crud.beforeFind

 		Crud.afterFind

 		Crud.recordNotFound

 		Crud.beforeSave

 		Crud.afterSave

 		Crud.setFlash

 		Crud.beforeRedirect

 		Crud.beforeRender

_static/comment-close.png

_static/ajax-loader.gif

_static/plus.png

